
	

Martin	Decker	-	Super-Sizing	PGA	Workareas	 	 Page	1	

Super-Sizing	PGA	Workareas	
Martin	Decker,	17.09.2017,	martin.decker@ora-solutions.net	

Caution	
	
The	content	from	this	paper	only	describes	my	findings.	It	may	well	be	that	I	am	not	seeing	
the	whole	picture	or	that	the	proposed	configuration	has	negative	side	effects	not	
mentioned	here.	If	you	have	anything	to	add	or	correct,	please	feel	free	to	contact	me	
directly.	

Introduction	
	
Todays	hardware	infrastructure	is	becoming	more	and	more	powerful	and	affordable.	Quite	
often,	the	servers	are	equipped	with	several	hundreds	of	Gigabytes	of	memory,	if	not	even	
Terabytes.	While	the	Oracle	Database	can	use	the	memory	for	caching	data	blocks	quite	
effectively,	using	the	memory	for	PGA	workareas,	e.g.	sort	operations	or	hash	joins,	is	more	
difficult.	The	following	discussion	is	limited	to	PGA	workareas.	There	are	other	consumers	of	
PGA	memory,	e.g.	PL/SQL	collections,	etc.	Those	are	not	in	scope	of	this	discussion.	
	
There	are	two	alternatives	for	using	PGA	memory:	manual	and	automatic	workarea	
management.	Whereas	the	first	one	is	practically	useless	because	it	is	too	difficult	to	
configure	optimally,	the	second	is	quite	easy	to	set	up.	There	is	practically	a	single	
parameter,	pga_aggregate_target,	which	controls	the	PGA	memory	for	all	the	processes	in	
total.	This	is	common	knowledge	as	this	has	not	changed	since	the	introduction	in	version	
9i.	But	only	few	DBAs	are	aware	of	the	limits	for	non-parallel	queries	and	how	much	
memory	such	serial	queries	can	get	from	the	huge	total	PGA	memory.	

Workarea	Size	Policies	
	
Manual	Workarea	Size	Policy		
	
The	behaviour	of	the	manual	workarea	policy	can	be	controlled	by	these	main	parameters,	
which	can	be	set	on	instance	or	session	level.	
	
workarea_size_policy=manual	
sort_area_size=<integer	between	1	and	2GB-1>	
hash_area_size=<integer	between	1	and	2GB-1>	
	
There	is	a	little	outdated,	but	still	excellent	whitepaper	called	"If	your	memory	serves	you	
right"	by	Richmond	Shee,	which	explains	why	sometimes	a	bigger	manual	value	for	
"sort_area_size"	has	negative	impact	on	response	time.	The	issue	he	describes	makes	it	very	
hard	to	manually	set	the	optimal	size	for	the	parameter,	therefore	making	the	manual	
workarea	size	policy	disadvantageous,	although	I	am	not	sure	if	the	algorithms	described	in	
the	paper	are	still	in	use.		



	

Martin	Decker	-	Super-Sizing	PGA	Workareas	 	 Page	2	

	
Automatic	Workarea	Size	Policy	
	
Parameter	 Description	
pga_aggregate_target
	 	

Target	size	for	the	aggregtate	PGA	memory	consumed	by	the	
instance	

pga_aggregate_limit	 	
_pga_max_size	 Maximum	size	of	the	PGA	memory	for	one	process	
_smm_max_size	 maximum	work	area	size	in	auto	mode	(serial)	in	KB	
_smm_px_max_size	 maximum	work	area	size	in	auto	mode	(global)	in	KB	
	
The	following	table	shows	how	different	values	for	pga_aggregate_target	result	in	different	
values	for	the	underscore	parameters	listed.	I	have	tested	with	releases	12.1.0.2	and	
12.2.0.1.	
	

	
	
Things	to	note:	
	

• In	Version	12.2.0.1,	there	is	a	protection	which	makes	it	impossible	to	size	
pga_aggregate_target	to	higher	values	than	physical	memory.	(ORA-00855:	
PGA_AGGREGATE_TARGET	cannot	be	set	because	of	insufficient	physical	memory.)	
Version	12.1.0.2	does	not	have	the	limit	to	protect	from	overprovisioning	memory.	
The	maximum	possible	value	for	pga_aggregate_target	is	therefore	4096G-1.	Even	
then,	the	parameter	_smm_px_max_size	is	set	to	50%	of	pga_aggregate_target.	

	
• Starting	with	pga_aggregate_target	=	16G,	the	values	_pga_max_size	and	

_smm_max_size	reach	their	maximum	values	with	2GB	and	1	GB	respectively.	
	

• The	parameter	_smm_px_max_size	does	not	have	an	artificial	maximum	value	but	is	
always	50%	of	pga_aggregate_target.	

	
This	shows	that	a	single	work	area	is	limited	to	1GB	and	all	the	workareas	of	a	single	process	
in	total	are	limited	to	2	GB	even	in	release	12.2.0.1.	
	



	

Martin	Decker	-	Super-Sizing	PGA	Workareas	 	 Page	3	

While	for	parallel	queries,	this	may	not	be	a	big	issue,	because	when	a	very	high	degree	of	
parallelism	is	used,	up	to	50%	of	pga_aggregate_target	can	be	exploited,	the	problem	is	
with	serial	queries	or	Standard	Edition	2,	where	parallel	query	is	not	available.	
	

What	are	the	options	to	increase	these	limits?	
	
_pga_max_size	
	
When	this	parameter	is	increased,	it	is	important	to	configure	operating	system	parameters	
that	are	required	for	increase	as	well.	There	are	2	alternatives	for	this:	
	
a.	_pga_max_size		-	OS	preparation	
	
For	Linux,	it	is	necessary	to	change	a	parameter	in	sysctl.conf:	
/etc/sysctl.conf:		
vm.max_map_count	(default	65535)	
	
This	parameter	results	in	65535	*	65535	=	4GB	of	process	memory.	If	_pga_max_size	needs	
to	be	increased,	this	parameter	should	be	increased	as	well.		
	
b.	_pga_max_size		-		Oracle	parameter	preparation	
	
If	there	is	no	chance	to	modify	operating	system	parameter,	then	the	oracle	parameter	
	
_realfree_heap_pagesize	(12c)	(default	65535)		
	
can	be	increased.		
	
So,	to	be	able	to	increase	_pga_max_size	to	16GB,	we	could	increase	
_realfree_heap_pagesize	to	262144	or	to	set	operating	system	parameter	
vm.max_map_count	to	262144.	
	
_smm_max_size	
	
The	parameter	_smm_max_size	defaults	to	50%	of	_pga_max_size,	but	the	tests	show	that	
there	is	a	hard	limit	at	4GB.	Even	when	the	displayed	value	of	_smm_max_size	is	shown	as	
bigger	than	4	GB,	the	workareas	are	spilled	to	disk	when	the	4GB	limit	is	reached.	Therefore,	
it	hardly	makes	any	sense	to	set	_pga_max_size	bigger	than	16	GB,	when	a	single	work	area	
can	only	hold	4	GB.	
	
The	following	testcases	show,	how	setting	the	hidden	parameter	_pga_max_size	is	affecting	
memory/disk	sort	operations.	
	



	

Martin	Decker	-	Super-Sizing	PGA	Workareas	 	 Page	4	

Testcases:	
	
In	the	following	testcases,	different	configurations	for	pga_aggregate_target	and	
_pga_max_size	are	used.		
	
Testcase	1	 p_a_t		=	64GB,	defaults	for	_pga_max_size	/	_smm_max_size	
Testcase	2	 p_a_t	=	64	GB,	_pga_max_size	=	4GB,	default	for	_smm_max_size	
Testcase	3	 p_a_t	64	GB,	_pga_max_size	=	8	GB,	default	for	_smm_max_size	
Testcase	4	 p_a_t	=	64	GB,	_pga_max_size	=	16	GB,	default	for	_smm_max_size	
Testcase	5	 p_a_t	=	19G,	_pga_max_size	=	8G,	default	for	_smm_max_size	
	
	
Testcase	Preparations	
	
I	am	using	a	test	table	with	26	GB	data	in	one	column	with	random	data	and	the	test	query	
is	using	a	sort	operation.		Then	I	am	using	the	"SAMPLE(x)"	Option	to	return	only	a	specific	
subset	of	the	data	for	the	sort.	
	
Query:	
select	/*+	FULL(r)	NOPARALLEL(r)	*/	*	FROM	random_strings		SAMPLE(&1)	r	ORDER	BY	1;	
	



	

Martin	Decker	-	Super-Sizing	PGA	Workareas	 	 Page	5	

	
Testcase	1:	p_a_t		=	64	GB,	defaults	for	_pga_max_size	/	_smm_max_size	
	

	
	
It	can	be	observed,	that	the	derived	values	for	_pga_max_size	are	2	GB	and	_smm_max_size	
1GB.	
	
=>	When	using	a	sample	size	of	3%	of	the	26	GB	table,	the	query	is	succeeding	in	doing	a	
memory	sort.	
	

	
	

	
	
=>	When	using	sample	of	4	percent	of	26	GB,	the	workarea	limit	of	1GB	is	reached	and	the	
sort	spills	to	disk.	(1	pass)	
	

	

	
	
This	shows	that	single	workareas	do	not	benefit	from	increasing	pga_aggregate_target	to	
values	>	16GB	with	the	default	configuration	of	_pga_max_size	/	_smm_max_size.	
	
	



	

Martin	Decker	-	Super-Sizing	PGA	Workareas	 	 Page	6	

	
Testcase	2:	p_a_t	=	64GB,	_pga_max_size	=	4GB,	default	for	_smm_max_size	
	

	
	
When	setting	_pga_max_size	to	4GB,	the	parameter	_smm_max_size	defaults	to	50%	of	
_pga_max_size	automatically.	(2GB).	
	
=>	The	7%	Sample	can	avoid	a	disk	sort	and	use	memory-only	sort	operation.	

	
	

	
	
=>	Increasing	the	sample	size	to		8%,	the	workarea	size	limit	is	reached	and	the	sort	spills	to	
disk.	(Temp	Tablespace)		
	

	
	

	
	



	

Martin	Decker	-	Super-Sizing	PGA	Workareas	 	 Page	7	

	
Testcase	3:	p_a_t	=	64	GB,	_pga_max_size	=	8GB,	default	for	_smm_max_size	
	

	
	
Here,	we	are	setting	_pga_max_size	to	8GB.	The	derived	value	for	_smm_max_size	is	50%	of	
_pga_max_size.	This	value	is	displayed	when	the	hidden	parameters	are	queried.	This	is	
noteworthy,	because	when	trying	to	set	"_smm_max_size",	it	only	accepts	values	up	to	2GB	
-1.	
	
=>	When	trying	to	use	a	15%	Sample	size,	we	still	succeed	in	doing	a	memory	sort	and	we	
can	see	that	in	fact,	the	workarea	used	was	roughly	4	GB.	This	is	somewhat	surprising	
because	I	was	of	the	opinion,	that	there	still	is	a	2	GB	limit	in	place.	
	

	
	

	
	
=>	Increasing	the	sample	size	to	16%,	we	are	reaching	the	limit	of	the	workarea	and	the	sort	
spills	to	disk.	
	

	

	



	

Martin	Decker	-	Super-Sizing	PGA	Workareas	 	 Page	8	

	
Testcase	4:	
	

	
	
Although	the	parameter	"_smm_max_size"	is	shown	here	to	be	around	8GB	and	50%	of	
_pga_max_size,	in	reality,	the	workarea	can	not	grow	beyond	4	GB.	At	that	limit,	the	sort	is	
spilled	to	disk.	This	can	be	verified	by	the	following	test.	
	
We	repeat	the	two	tests	with	sample	sizes	15%	and	16%.		
	
=>	15	PCT	
	

	
	

	
	
=>	16	PCT	
	

	
	

	
	
Again,	the	15%	sample	can	be	satisfied	with	a	memory	sort,	but	the	16%	still	spills	to	disk.	
This	shows	that	even	higher	values	for	_smm_max_size	are	displayed	when	the	value	is	
derived	from	_pga_max_size	values	higher	than	8	GB,	the	hard	limit	is	still	4GB.	
	



	

Martin	Decker	-	Super-Sizing	PGA	Workareas	 	 Page	9	

	
Testcase	5:	p_a_t	=	19G,	_pga_max_size	=	8G,	default	for	_smm_max_size	
	
We	know	that	the	concept	of	automatic	workarea	policy	is	that	a	big	pool	of	memory	is	
divided	between	all	the	workareas	of	an	instance.	Therefore,	the	concept	has	to	limit	the	
amount	of	memory	that	a	single	workarea	can	take	in	order	to	not	blindly	overallocate	
memory	or	to	starve	other	workarea	consumers.	The	test	shows	that	this	value	is	
"pga_aggregate_target"	divided	by	5.	
	
In	this	test,	we	reduce	the	amount	of	pga_aggregate_target	below	the	factor	of	5	*	
workarea	size	(4GB)	->	20GB.		
	
With	"pga_aggregate_target	=	20G",	these	are	the	derived	values	for	_smm_max_size:	
	

	
	
With	pga_aggregate_target	=	20G,	the	test	with	15%	sample	size	results	in	a	memory	sort.		
	
With	"pga_aggregate_target	=	19G",	this	is	the	derived	valuefor	_smm_max_size.		
	

	
	
In	this	case,	we	set	it	to	19G	and	can	immediately,	see	that	the	derived	value	for	
_smm_max_size	has	decreased	as	well	and	now	the	query	with	15%	sample	results	in	a	disk	
sort.	
	
	
This	confirms	MOS	Note	453540.1,	which	notes	that	you	have	to	make	
pga_aggregate_target	bigger	or	equal	5	times	the	required	workarea!	
	



	

Martin	Decker	-	Super-Sizing	PGA	Workareas	 	 Page	10	

	
Parallel	Query	
	
In	parallel	query,	the	task	of	reading	the	table	data	and	sorting	is	distributed	amog	multiple	
parallel	query	slaves.	Each	slave	has	its	own	process	and	each	slave	can	in	turn	use	a	4	GB	
workarea.	The	parameter	"_smm_max_px_size",	which	defaults	to	50%	of	
pga_aggregate_target	specifies	how	much	memory	for	the	parallel	operation	is	used	in	
total.	Lets	consider	this	example:	
	
Data	Set	to	Sort:	100	GB	
Workarea	Size	per	Slave:	4GB	(fixed)	
pga_aggregate_target	=	200G	
=>	Required	Degree	of	Parallelism	=	25	
	
You	can	see	that	even	with	parallel	query,	to	fully	exploit	the	huge	amount	of	memory	of	
todays	servers,	one	needs	a	very	very	high	degree	of	parallelism.	It	is	also	important	to	
consider	the	amount	of	CPU	cores,	that	are	available,	when	deciding	on	a	degree	of	
parallelism.	

Conclusion	
	
For	users	of	Oracle	Database	-	Standard	Edition	2	or	non-parallel	sort	operations,	one	can	
delay	the	point	of	spilling	to	disk	and	therefore	causing	a	slower	disk	sort,	by	increasing	
parameter	"_pga_max_size"	after	having	considered	operating	system	or	realfree	
parameter	increase.	If	"_pga_max_size"	is	increased	to	8	GB,	the	single	work	area	
(_smm_max_size)	can	be	4	GB.	This	is	double	the	value	which	can	be	set	to	_smm_max_size	
or	to	sort_area_size	explicitly,	which	is	a	little	surprising.	Also,	pga_aggregate_target	has	to	
be	set	5	times	the	desired	workarea	size	(4GB),	which	means	20	GB	in	order	to	fully	exploit	
the	possible	workarea.	Any	further	increase	of	pga_aggregate_target	or	_pga_max_size	do	
not	offer	any	additional	benefit	for	a	single	work	area.	
	
I	have	filed	an	enhancement	request	in	2014	to	have	the	amount	of	memory	for	a	single	
workarea	increased	and	I	am	sure	that	I	was	not	the	only	one.	However,	even	in	release	
12.2.0.1,	the	workarea	size	is	still	strongly	limited.	It	remains	to	be	seen	with	which	future	
version,	this	limit	can	be	avoided.	

References:	
• If	your	memory	serves	you	right	

http://www.dbguide.net/upload/20060317/1142597040621.pdf	
	

• Secrets	of	the	Oracle	Database	-	Norbert	Debes,	Apress	
	

• Alex	Fatkulin	-	Hotsos	2014	-	Leveraging	in-memory	storage	to	overcome	Oracle	
Database	PGA	memory	limits	-	https://de.slideshare.net/Enkitec/fatkulin-hotsos-
2014	

	



	

Martin	Decker	-	Super-Sizing	PGA	Workareas	 	 Page	11	

• MOS	453540.1	-	How	To	Super-Size	Work	Area	Memory	Size	Used	By	Sessions?	(Doc	
ID	453540.1)	

	
• Bug	24969248	:	INCREASE	SORT	AREA	PER	PROCESS	LIMIT	IN	AUTOMATIC	PGA	

MANAGEMENT	
	

• Bug	19206047	:	INTERNAL	LIMITATION	THAT	A	SINGLE	WORKAREA	SIZE	IS	LIMITED	
TO	2GB	

Todos:	
	
Research	_smm_iosort_cap	


